1,293 research outputs found

    Real-time image difference detection using a polarization rotation spacial light modulator

    Get PDF
    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization-rotation spatial light modulator display such as a multi-pixel liquid crystal display or a magnetooptical rotation type display. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies

    Real-time optical multiple object recognition and tracking system and method

    Get PDF
    The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium

    Real-time optical multiple object recognition and tracking system and method

    Get PDF
    System for optically recognizing and tracking a plurality of objects within a field of vision. Laser (46) produces a coherent beam (48). Beam splitter (24) splits the beam into object (26) and reference (28) beams. Beam expanders (50) and collimators (52) transform the beams (26, 28) into coherent collimated light beams (26', 28'). A two-dimensional SLM (54), disposed in the object beam (26'), modulates the object beam with optical information as a function of signals from a first camera (16) which develops X and Y signals reflecting the contents of its field of vision. A hololens (38), positioned in the object beam (26') subsequent to the modulator (54), focuses the object beam at a plurality of focal points (42). A planar transparency-forming film (32), disposed with the focal points on an exposable surface, forms a multiple position interference filter (62) upon exposure of the surface and development processing of the film (32). A reflector (53) directing the reference beam (28') onto the film (32), exposes the surface, with images focused by the hololens (38), to form interference patterns on the surface. There is apparatus (16', 64) for sensing and indicating light passage through respective ones of the positions of the filter (62), whereby recognition of objects corresponding to respective ones of the positions of the filter (62) is affected. For tracking, apparatus (64) focuses light passing through the filter (62) onto a matrix of CCD's in a second camera (16') to form a two-dimensional display of the recognized objects

    Real-time image difference detection using a polarization rotation spacial light modulator

    Get PDF
    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization rotation spacial light modulator display such as a multi-pixel liquid crystal display or a magneto optical rotation type. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies

    The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD.</p> <p>Methods</p> <p>In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known AChE inhibitors.</p> <p>Results</p> <p>The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R<sup>2 </sup>= 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site.</p> <p>Conclusions</p> <p>The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites.</p

    Ultraquantum magnetoresistance in Kramers Weyl semimetal candidate β\beta-Ag2Se

    Get PDF
    The topological semimetal β\beta-Ag2Se features a Kramers Weyl node at the origin in momentum space and a quadruplet of spinless Weyl nodes, which are annihilated by spin-orbit coupling. We show that single crystalline β\beta-Ag2Se manifests giant Shubnikov-de Haas oscillations in the longitudinal magnetoresistance which stem from a small electron pocket that can be driven beyond the quantum limit by a field less than 9 T. This small electron pocket is a remainder of the spin-orbit annihilatedWeyl nodes and thus encloses a Berry-phase structure. Moreover, we observed a negative longitudinal magnetoresistance when the magnetic field is beyond the quantum limit. Our experimental findings are complemented by thorough theoretical band structure analyses of this Kramers Weyl semimetal candidate, including first-principle calculations and an effective k*p model.Comment: A new version based on arXiv:1502.0232

    Reduced scleral TIMP-2 expression is associated with myopia development: TIMP-2 supplementation stabilizes scleral biomarkers of myopia and limits myopia development

    Full text link
    Purpose: The purpose of this study was to determine the endogenous regulation pattern of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the tree shrew sclera during myopia development and investigate the capacity of exogenous TIMP-2 to inhibit matrix metalloproteinase-2 (MMP-2) in vitro and both scleral collagen degradation and myopia development in vivo. Methods: TIMP-2 expression in the sclera during myopia development was assessed using polymerase chain reaction. In vitro TIMP-2 inhibition of MMP-2 was investigated using a gelatinase activity plate assay and zymography. Tree shrews were injected with a collagen precursor before undergoing monocular form deprivation and concurrent daily subconjunctival injections of either TIMP-2 or vehicle to the form-deprived eye. In vivo ocular biometry changes were monitored, and scleral tissue was collected after 12 days and assayed for collagen degradation. Results: The development of myopia was associated with a mean reduction in TIMP-2 mRNA expression after 5 days of form deprivation (P &lt; 0.01). Both activation and activity of MMP-2 were inhibited by TIMP-2 with an IC50 of 10 to 20 and 2 nM, respectively. In vivo exogenous addition of TIMP-2 significantly reduced myopia development (P &lt; 0.01), due to reduced vitreous chamber elongation (P &lt; 0.01). In vivo TIMP-2 treatment also significantly inhibited posterior scleral collagen degradation relative to vehicle-treated eyes (P &lt; 0.01), with levels similar to those in control eyes. Conclusions: Myopia development in mammals is associated with reduced expression of TIMP-2, which contributes to increased degradative activity in the sclera. It follows that replenishment of this TIMP-2 significantly reduced the rate of both scleral collagen degradation and myopia development
    corecore